
Department of CSE Page 1 of 35

UNIT-4
Abstract Data Types

The Concept of Abstraction
 An abstraction is a view or representation of an entity that includes only the

most significant attributes

 The concept of abstraction is fundamental in programming (and computer

science)

 Nearly all programming languages support process abstraction with
subprograms

 Nearly all programming languages designed since 1980 support data abstraction

Introduction to Data Abstraction
 An Abstract Data Type is a user-defined data type that satisfies the following two

conditions:

– The representation of, and operations on, objects of the type are defined in a

single syntactic unit

– The representation of objects of the type is hidden from the program units

that use these objects, so the only operations possible are those provided in

the type's definition

Advantages of Data Abstraction

 Advantage of the first condition

– Program organization, modifiability (everything associated with a data

structure is together), and separate compilation

 Advantage the second condition

– Reliability--by hiding the data representations, user code cannot directly

access objects of the type or depend on the representation, allowing the

representation to be changed without affecting user code
Language Requirements for ADTs:

 A syntactic unit in which to encapsulate the type definition

 A method of making type names and subprogram headers visible to clients,

while hiding actual definitions

 Some primitive operations must be built into the language processor

Design Issues:

 Can abstract types be parameterized?

 What access controls are provided?

Language Examples

Language Examples: Ada
 The encapsulation construct is called a package

– Specification package (the interface)
– Body package (implementation of the entities named in the specification)

 Information Hiding

– The spec package has two parts, public and private

– The name of the abstract type appears in the public part of the specification
package. This part may also include representations of unhidden types

Department of CSE Page 2 of 35

– The representation of the abstract type appears in a part of the specification

called the private part

 More restricted form with limited private types
– Private types have built-in operations for assignment and comparison
– Limited private types have NO built-in operations

 Reasons for the public/private spec package:

1. The compiler must be able to see the representation after seeing only the

spec package (it cannot see the private part)
2. Clients must see the type name, but not the representation (they also

cannot see the private part)

 Having part of the implementation details (the representation) in the spec

package and part (the method bodies) in the body package is not good

One solution: make all ADTs pointers
Problems with this:

1. Difficulties with pointers
2. Object comparisons

3. Control of object allocation is lost

An Example in Ada

package Stack_Pack is
type stack_type is limited private;
max_size: constant := 100;
function empty(stk: in stack_type) return Boolean;
procedure push(stk: in out stack_type; elem:in Integer);
procedure pop(stk: in out stack_type);
function top(stk: in stack_type) return Integer;
private -- hidden from clients
type list_type is array (1..max_size) of Integer;
type stack_type is record
list: list_type;
topsub: Integer range 0..max_size) := 0;
end record;

end Stack_Pack

Language Examples: C++

 Based on C struct type and Simula 67 classes

 The class is the encapsulation device

 All of the class instances of a class share a single copy of the member functions

 Each instance of a class has its own copy of the class data members

 Instances can be static, stack dynamic, or heap dynamic

 Information Hiding

– Private clause for hidden entities

– Public clause for interface entities
– Protected clause for inheritance (Chapter 12)

 Constructors:

– Functions to initialize the data members of instances (they do not create the
objects)

– May also allocate storage if part of the object is heap-dynamic
– Can include parameters to provide parameterization of the objects

– Implicitly called when an instance is created
– Can be explicitly called

Department of CSE Page 3 of 35

– Name is the same as the class name

 Destructors

– Functions to cleanup after an instance is destroyed; usually just to reclaim

heap storage

– Implicitly called when the object‘s lifetime ends
– Can be explicitly called

– Name is the class name, preceded by a tilde (~)

An Example in C++
class stack {

private:
int *stackPtr, maxLen, topPtr;

public:
stack() { // a constructor

stackPtr = new int [100];
maxLen = 99;

topPtr = -1;
};

~stack () {delete [] stackPtr;};
void push (int num) {…};

void pop () {…};

int top () {…};

int empty () {…};

}

Evaluation of ADTs in C++ and Ada
 C++ support for ADTs is similar to expressive power of Ada

 Both provide effective mechanisms for encapsulation and information hiding

 Ada packages are more general encapsulations; classes are types

 Friend functions or classes - to provide access to private members to some

unrelated units or functions
– Necessary in C++

Language Examples: Java
 Similar to C++, except:

– All user-defined types are classes

– All objects are allocated from the heap and accessed through reference

variables

– Individual entities in classes have access control modifiers (private or public),

rather than clauses
– Java has a second scoping mechanism, package scope, which can be used in

place of friends

 All entities in all classes in a package that do not have access control modifiers

are visible throughout the package

An Example in Java
class StackClass {

private:

private int [] *stackRef;
private int [] maxLen, topIndex;

public StackClass() { // a constructor

stackRef = new int [100];
maxLen = 99;

topPtr = -1;
};
public void push (int num) {…};

public void pop () {…};

public int top () {…};

public boolean empty () {…};

}

Department of CSE Page 4 of 35

Language Examples: C#
 Based on C++ and Java

 Adds two access modifiers, internal and protected internal

 All class instances are heap dynamic

 Default constructors are available for all classes

 Garbage collection is used for most heap objects, so destructors are rarely used

 structs are lightweight classes that do not support inheritance

 Common solution to need for access to data members: accessor methods(getter

and setter)

 C# provides properties as a way of implementing getters and setters without

requiring explicit method calls

C# Property Example

public class Weather {

public int DegreeDays { //** DegreeDays is a property

get {return degreeDays;}

set {
if(value < 0 || value > 30)

Console.WriteLine("Value is out of range: {0}", value);

else degreeDays = value;}
}

private int degreeDays;
...

}

...
Weather w = new Weather();

int degreeDaysToday, oldDegreeDays;

...
w.DegreeDays = degreeDaysToday;

...
oldDegreeDays = w.DegreeDays;

Parameterized Abstract Data Types
 Parameterized ADTs allow designing an ADT that can store any type elements

(among other things)

 Also known as generic classes

 C++, Ada, Java 5.0, and C# 2005 provide support for parameterized ADTs

Parameterized ADTs in Ada
 Ada Generic Packages

– Make the stack type more flexible by making the element type and the size of

the stack generic
generic

Max_Size: Positive;

type Elem_Type is private;

package Generic_Stack is
Type Stack_Type is limited private;
function Top(Stk: in out StackType) return Elem_type;
…

end Generic_Stack;

Package Integer_Stack is new Generic_Stack(100,Integer);

Package Float_Stack is new Generic_Stack(100,Float);

Parameterized ADTs in C++
 Classes can be somewhat generic by writing parameterized constructor

functions
class stack {

…

Department of CSE Page 5 of 35

stack (int size) {

stk_ptr = new int [size];

max_len = size - 1;
top = -1;
};
…

}

stack stk(100);

 The stack element type can be parameterized by making the class a templated

class
template <class Type>

class stack {
private:

Type *stackPtr;

const int maxLen;
int topPtr;

public:

stack() {
stackPtr = new Type[100];

maxLen = 99;

topPtr = -1;
}

…

}

Parameterized Classes in Java 5.0
 Generic parameters must be classes

 Most common generic types are the collection types, such as LinkedList and

ArrayList

 Eliminate the need to cast objects that are removed

 Eliminate the problem of having multiple types in a structure

Parameterized Classes in C# 2005

 Similar to those of Java 5.0

 Elements of parameterized structures can be accessed through indexing

Summary of ADT
 The concept of ADTs and their use in program design was a milestone in the

development of languages

 Two primary features of ADTs are the packaging of data with their associated

operations and information hiding

 Ada provides packages that simulate ADTs
 C++ data abstraction is provided by classes

 Java‘s data abstraction is similar to C++

 Ada, C++, Java 5.0, and C# 2005 support parameterized ADTs

Object-Oriented Programming
 Abstract data types

 Inheritance
– Inheritance is the central theme in OOP and languages that support it

 Polymorphism

Inheritance
 Productivity increases can come from reuse

– ADTs are difficult to reuse—always need changes
– All ADTs are independent and at the same level

 Inheritance allows new classes defined in terms of existing ones, i.e., by

allowing them to inherit common parts

Department of CSE Page 6 of 35

 Inheritance addresses both of the above concerns--reuse ADTs after minor
changes and define classes in a hierarchy

Object-Oriented Concepts

 ADTs are usually called classes

 Class instances are called objects

 A class that inherits is a derived class or a subclass

 The class from which another class inherits is a parent class or superclass

 Subprograms that define operations on objects are called methods

 Calls to methods are called messages

 The entire collection of methods of an object is called its message protocol or

message interface
 Messages have two parts--a method name and the destination object

 In the simplest case, a class inherits all of the entities of its parent

 Inheritance can be complicated by access controls to encapsulated entities
– A class can hide entities from its subclasses

– A class can hide entities from its clients
– A class can also hide entities for its clients while allowing its subclasses to

see them

 Besides inheriting methods as is, a class can modify an inherited method
– The new one overrides the inherited one

– The method in the parent is overriden

 There are two kinds of variables in a class:
– Class variables - one/class

– Instance variables - one/object

 There are two kinds of methods in a class:
– Class methods – accept messages to the class

– Instance methods – accept messages to objects

 Single vs. Multiple Inheritance

 One disadvantage of inheritance for reuse:

– Creates interdependencies among classes that complicate maintenance

Dynamic Binding
 A polymorphic variable can be defined in a class that is able to reference (or

point to) objects of the class and objects of any of its descendants

 When a class hierarchy includes classes that override methods and such

methods are called through a polymorphic variable, the binding to the correct

method will be dynamic

 Allows software systems to be more easily extended during both development

and maintenance

Dynamic Binding Concepts
 An abstract method is one that does not include a definition (it only defines a

protocol)

 An abstract class is one that includes at least one virtual method

 An abstract class cannot be instantiated

Design Issues for OOP Languages

 The Exclusivity of Objects

 Are Subclasses Subtypes?

 Type Checking and Polymorphism

 Single and Multiple Inheritance

 Object Allocation and DeAllocation

Department of CSE Page 7 of 35

 Dynamic and Static Binding

 Nested Classes

The Exclusivity of Objects
 Everything is an object

– Advantage - elegance and purity

– Disadvantage - slow operations on simple objects

 Add objects to a complete typing system

– Advantage - fast operations on simple objects

– Disadvantage - results in a confusing type system (two kinds of entities)

 Include an imperative-style typing system for primitives but make everything

else objects
– Advantage - fast operations on simple objects and a relatively small typing

system

– Disadvantage - still some confusion because of the two type systems

Are Subclasses Subtypes?
 Does an “is-a” relationship hold between a parent class object and an object of

the subclass?

– If a derived class is-a parent class, then objects of the derived class must
behave the same as the parent class object

 A derived class is a subtype if it has an is-a relationship with its parent class
– Subclass can only add variables and methods and override inherited methods in

“compatible” ways

Type Checking and Polymorphism
 Polymorphism may require dynamic type checking of parameters and the return

value

– Dynamic type checking is costly and delays error detection

 If overriding methods are restricted to having the same parameter types and

return type, the checking can be static

Single and Multiple Inheritance
 Multiple inheritance allows a new class to inherit from two or more classes

 Disadvantages of multiple inheritance:

– Language and implementation complexity (in part due to name collisions)

– Potential inefficiency - dynamic binding costs more with multiple inheritance

(but not much)

 Advantage:
– Sometimes it is quite convenient and valuable

Allocation and DeAllocation of Objects
 From where are objects allocated?

– If they behave line the ADTs, they can be allocated from anywhere

 Allocated from the run-time stack

 Explicitly create on the heap (via new)

– If they are all heap-dynamic, references can be uniform thru a pointer or

reference variable

 Simplifies assignment - dereferencing can be implicit
– If objects are stack dynamic, there is a problem with regard to subtypes

 Is deallocation explicit or implicit?

Dynamic and Static Binding
 Should all binding of messages to methods be dynamic?

– If none are, you lose the advantages of dynamic binding

– If all are, it is inefficient

 Allow the user to specify

Department of CSE Page 8 of 35

Nested Classes
 If a new class is needed by only one class, there is no reason to define so it can

be seen by other classes

– Can the new class be nested inside the class that uses it?
– In some cases, the new class is nested inside a subprogram rather than

directly in another class

 Other issues:
– Which facilities of the nesting class should be visible to the nested class and

vice versa

Support for OOP in Smalltalk
 Smalltalk is a pure OOP language

– Everything is an object

– All objects have local memory

– All computation is through objects sending messages to objects

– None of the appearances of imperative languages
– All objected are allocated from the heap

– All deallocation is implicit

 Type Checking and Polymorphism

– All binding of messages to methods is dynamic

 The process is to search the object to which the message is sent for the method;
if not found, search the superclass, etc. up to the system class which has no

superclass

– The only type checking in Smalltalk is dynamic and the only type error

occurs when a message is sent to an object that has no matching method

 Inheritance
– A Smalltalk subclass inherits all of the instance variables, instance methods,

and class methods of its superclass

– All subclasses are subtypes (nothing can be hidden)
– All inheritance is implementation inheritance
– No multiple inheritance

 Evaluation of Smalltalk
– The syntax of the language is simple and regular

– Good example of power provided by a small language
– Slow compared with conventional compiled imperative languages

– Dynamic binding allows type errors to go undetected until run time

– Introduced the graphical user interface

– Greatest impact: advancement of OOP

Support for OOP in C++
 General Characteristics:

– Evolved from C and SIMULA 67

– Among the most widely used OOP languages

– Mixed typing system

– Constructors and destructors
– Elaborate access controls to class entities

 Inheritance

– A class need not be the subclass of any class
– Access controls for members are

– Private (visible only in the class and friends) (disallows subclasses from being

subtypes)

Department of CSE Page 9 of 35

– Public (visible in subclasses and clients)

– Protected (visible in the class and in subclasses, but not clients)

 In addition, the subclassing process can be declared with access controls
(private or public), which define potential changes in access by subclasses

– Private derivation - inherited public and protected members are private in

the subclasses
– Public derivation public and protected members are also public and

protected in subclasses

Inheritance Example in C++
class base_class {

private:

int a;

float x;

protected:
int b;
float y;

public:
int c;
float z;

};

class subclass_1 : public base_class { … };

// In this one, b and y are protected and

// c and z are public
class subclass_2 : private base_class { … };

// In this one, b, y, c, and z are private,

// and no derived class has access to any

// member of base_class

 A member that is not accessible in a subclass (because of private derivation) can

be declared to be visible there using the scope resolution operator (::), e.g.,
class subclass_3 : private base_class {

base_class :: c;
…

}

 One motivation for using private derivation

– A class provides members that must be visible, so they are defined to be

public members; a derived class adds some new members, but does not want

its clients to see the members of the parent class, even though they had to be
public in the parent class definition

 Multiple inheritance is supported
– If there are two inherited members with the same name, they can both be

referenced using the scope resolution operator

 Dynamic Binding
– A method can be defined to be virtual, which means that they can be called

through polymorphic variables and dynamically bound to messages

– A pure virtual function has no definition at all
– A class that has at least one pure virtual function is an abstractclass

 Evaluation

– C++ provides extensive access controls (unlike Smalltalk)
– C++ provides multiple inheritance

– In C++, the programmer must decide at design time which methods will be

statically bound and which must be dynamically bound

 Static binding is faster!
– Smalltalk type checking is dynamic (flexible, but somewhat unsafe)

– Because of interpretation and dynamic binding, Smalltalk is ~10 times

slower than C++

Department of CSE Page 10 of 35

Support for OOP in Java – CO4
 Because of its close relationship to C++, focus is on the differences from that

language

 General Characteristics
– All data are objects except the primitive types

– All primitive types have wrapper classes that store one data value
– All objects are heap-dynamic, are referenced through reference variables,

and most are allocated with new

– A finalize method is implicitly called when the garbage collector is about to
reclaim the storage occupied by the object

 Inheritance
– Single inheritance supported only, but there is an abstract class category

that provides some of the benefits of multiple inheritance (interface)

– An interface can include only method declarations and named constants,
e.g.,

public interface Comparable {
public int comparedTo (Object b);}
– Methods can be final (cannot be overriden)

 Dynamic Binding

– In Java, all messages are dynamically bound to methods, unless the method

is final (i.e., it cannot be overriden, therefore dynamic binding serves no
purpose)

– Static binding is also used if the methods is static or private both of which

disallow overriding

 Several varieties of nested classes

 All are hidden from all classes in their package, except for the nesting class

 Nested classes can be anonymous

 A local nested class is defined in a method of its nesting class
– No access specifier is used

 Evaluation
– Design decisions to support OOP are similar to C++

– No support for procedural programming

– No parentless classes
– Dynamic binding is used as “normal” way to bind method calls to method

definitions

– Uses interfaces to provide a simple form of support for multiple inheritance

Support for OOP in C# -CO4
 General characteristics

– Support for OOP similar to Java

– Includes both classes and structs
– Classes are similar to Java‘s classes

– structs are less powerful stack-dynamic constructs (e.g., no inheritance)

 Inheritance

– Uses the syntax of C++ for defining classes

– A method inherited from parent class can be replaced in the derived class by
marking its definition with new

– The parent class version can still be called explicitly with the prefix base:

base.Draw()

 Dynamic binding
– To allow dynamic binding of method calls to methods:

Department of CSE Page 11 of 35

 The base class method is marked virtual

 The corresponding methods in derived classes are marked override
– Abstract methods are marked abstract and must be implemented in all

subclasses

– All C# classes are ultimately derived from a single root class, Object

 Nested Classes

– A C# class that is directly nested in a nesting class behaves like a Java static
nested class

– C# does not support nested classes that behave like the non-static classes of

Java

 Evaluation
– C# is the most recently designed C-based OO language

– The differences between C#‘s and Java‘s support for OOP are relatively minor

Support for OOP in Ada 95 – CO4
 General Characteristics

– OOP was one of the most important extensions to Ada 83

– Encapsulation container is a package that defines a tagged type
– A tagged type is one in which every object includes a tag to indicate during

execution its type (the tags are internal)

– Tagged types can be either private types or records
– No constructors or destructors are implicitly called

 Inheritance

– Subclasses can be derived from tagged types

– New entities are added to the inherited entities by placing them in a record

definition

– All subclasses are subtypes
– No support for multiple inheritance

 A comparable effect can be achieved using generic classes

Example of a Tagged Type
Package Person_Pkg is
type Person is tagged private;

procedure Display(P : in out Person);

private

type Person is tagged

record
Name : String(1..30);

Address : String(1..30);

Age : Integer;
end record;

end Person_Pkg;

with Person_Pkg; use Person_Pkg;

package Student_Pkg is

type Student is new Person with

record
Grade_Point_Average : Float;

Grade_Level : Integer;
end record;

procedure Display (St: in Student);

end Student_Pkg;

// Note: Display is being overridden from Person_Pkg

 Dynamic Binding

– Dynamic binding is done using polymorphic variables called classwide types

 For the tagged type Prtdon, the classwide type is Person‘ class
– Other bindings are static

Department of CSE Page 12 of 35

– Any method may be dynamically bound

– Purely abstract base types can be defined in Ada 95 by including the

reserved word abstract

 Evaluation
– Ada offers complete support for OOP

– C++ offers better form of inheritance than Ada
– Ada includes no initialization of objects (e.g., constructors)

– Dynamic binding in C-based OOP languages is restricted to pointers and/or

references to objects; Ada has no such restriction and is thus more

orthogonal

Implementing OOPs Constructs

 Two interesting and challenging parts

– Storage structures for instance variables
– Dynamic binding of messages to methods

Instance Data Storage
 Class instance records (CIRs) store the state of an object

– Static (built at compile time)

 If a class has a parent, the subclass instance variables are added to the parent

CIR

 Because CIR is static, access to all instance variables is done as it is in records
– Efficient

Dynamic Binding of Methods Calls
 Methods in a class that are statically bound need not be involved in the CIR;

methods that will be dynamically bound must have entries in the CIR

– Calls to dynamically bound methods can be connected to the corresponding

code thru a pointer in the CIR
– The storage structure is sometimes called virtual method tables (vtable)
– Method calls can be represented as offsets from the beginning of the vtable

Summary of OOPs
 OO programming involves three fundamental concepts: ADTs, inheritance,

dynamic binding

 Major design issues: exclusivity of objects, subclasses and subtypes, type

checking and polymorphism, single and multiple inheritance, dynamic binding,

explicit and implicit de-allocation of objects, and nested classes

 Smalltalk is a pure OOL

 C++ has two distinct type system (hybrid)

 Java is not a hybrid language like C++; it supports only OO programming

 C# is based on C++ and Java

 Implementing OOP involves some new data structures

Concurrency

 Concurrency can occur at four levels:

– Machine instruction level

– High-level language statement level
– Unit level

– Program level

 Because there are no language issues in instruction- and program-level

concurrency, they are not addressed here

Department of CSE Page 13 of 35

Multiprocessor Architectures
 Late 1950s - one general-purpose processor and one or more special purpose

processors for input and output operations

 Early 1960s - multiple complete processors, used for program-level concurrency

 Mid-1960s - multiple partial processors, used for instruction-level concurrency

 Single-Instruction Multiple-Data (SIMD) machines

 Multiple-Instruction Multiple-Data (MIMD) machines

– Independent processors that can be synchronized (unit-level concurrency)

Categories of Concurrency
 A thread of control in a program is the sequence of program points reached as

control flows through the program

 Categories of Concurrency:
– Physical concurrency - Multiple independent processors (multiple threads of

control)
– Logical concurrency - The appearance of physical concurrency is presented by

time-sharing one processor (software can be designed as if there were

multiple threads of control)

 Coroutines (quasi-concurrency) have a single thread of control

Motivations for Studying Concurrency
 Involves a different way of designing software that can be very useful— many

real-world situations involve concurrency

 Multiprocessor computers capable of physical concurrency are now widely used

Subprogram-Level Concurrency

 A task or process is a program unit that can be in concurrent execution with
other program units

 Tasks differ from ordinary subprograms in that:
– A task may be implicitly started
– When a program unit starts the execution of a task, it is not necessarily

suspended

– When a task‘s execution is completed, control may not return to the caller

 Tasks usually work together

Two General Categories of Tasks
 Heavyweight tasks execute in their own address space

 Lightweight tasks all run in the same address space

 A task is disjoint if it does not communicate with or affect the execution of any

other task in the program in any way

Task Synchronization

 A mechanism that controls the order in which tasks execute

 Two kinds of synchronization

– Cooperation synchronization
– Competition synchronization

 Task communication is necessary for synchronization, provided by:
– Shared nonlocal variables

– Parameters

– Message passing

Kinds of synchronization
 Cooperation: Task A must wait for task B to complete some specific activity

before task A can continue its execution, e.g., the producer-consumer problem

Department of CSE Page 14 of 35

 Competition: Two or more tasks must use some resource that cannot be
simultaneously used, e.g., a shared counter

– Competition is usually provided by mutually exclusive access (approaches

are discussed later)

–

Scheduler

Figure 6.1 Need for Competition Synchronization

 Providing synchronization requires a mechanism for delaying task execution

 Task execution control is maintained by a program called the scheduler, which
maps task execution onto available processors

Task Execution States
 New - created but not yet started

 Ready - ready to run but not currently running (no available processor)

 Running
 Blocked - has been running, but cannot now continue (usually waiting for some

event to occur)

 Dead - no longer active in any sense

Liveness and Deadlock

 Liveness is a characteristic that a program unit may or may not have

– In sequential code, it means the unit will eventually complete its execution

 In a concurrent environment, a task can easily lose its liveness

 If all tasks in a concurrent environment lose their liveness, it is called deadlock

Design Issues for Concurrency
 Competition and cooperation synchronization

 Controlling task scheduling

 How and when tasks start and end execution

 How and when are tasks created

Methods of Providing Synchronization
 Semaphores

 Monitors

 Message Passing

Semaphores

 Dijkstra - 1965

 A semaphore is a data structure consisting of a counter and a queue for storing

task descriptors

 Semaphores can be used to implement guards on the code that accesses shared

data structures

 Semaphores have only two operations, wait and release (originally called P and
V by Dijkstra)

Department of CSE Page 15 of 35

 Semaphores can be used to provide both competition and cooperation
synchronization

Cooperation Synchronization with Semaphores

 Example: A shared buffer

 The buffer is implemented as an ADT with the operations DEPOSIT and FETCH

as the only ways to access the buffer

 Use two semaphores for cooperation: emptyspots and fullspots

 The semaphore counters are used to store the numbers of empty spots and full

spots in the buffer

 DEPOSIT must first check emptyspots to see if there is room in the buffer

 If there is room, the counter of emptyspots is decremented and the value is

inserted

 If there is no room, the caller is stored in the queue of emptyspots

 When DEPOSIT is finished, it must increment the counter of fullspots

 FETCH must first check fullspots to see if there is a value

– If there is a full spot, the counter of fullspots is decremented and the value is

removed

– If there are no values in the buffer, the caller must be placed in the queue of
fullspots

– When FETCH is finished, it increments the counter of emptyspots

 The operations of FETCH and DEPOSIT on the semaphores are accomplished

through two semaphore operations named wait and release

Semaphores: Wait Operation

wait(aSemaphore)
if aSemaphore‘s counter > 0 then

decrement aSemaphore‘s counter

else
put the caller in aSemaphore‘s queue

attempt to transfer control to a ready task

-- if the task ready queue is empty,

-- deadlock occurs

end

Semaphores: Release Operation
release(aSemaphore)

if aSemaphore‘s queue is empty then
increment aSemaphore‘s counter

end

else
put the calling task in the task ready queue
transfer control to a task from aSemaphore‘s queue

Producer Consumer Code
semaphore fullspots, emptyspots;

fullstops.count = 0;
emptyspots.count = BUFLEN;

task producer;

loop
-- produce VALUE –-

wait (emptyspots); {wait for space}
DEPOSIT(VALUE);
release(fullspots); {increase filled}

end loop;

end producer;

Department of CSE Page 16 of 35

Producer Consumer Code
task consumer;

loop

wait (fullspots);{wait till not empty}}

FETCH(VALUE);

release(emptyspots); {increase empty}
-- consume VALUE –-

end loop;

end consumer;

Competition Synchronization with Semaphores
 A third semaphore, named access, is used to control access (competition

synchronization)
– The counter of access will only have the values 0 and 1
– Such a semaphore is called a binary semaphore

 Note that wait and release must be atomic!

Producer Consumer Code
semaphore access, fullspots, emptyspots;

access.count = 0;
fullstops.count = 0;

emptyspots.count = BUFLEN;
task producer;
loop

-- produce VALUE –-

wait(emptyspots); {wait for space}

wait(access); {wait for access)
DEPOSIT(VALUE);

release(access); {relinquish access}

release(fullspots); {increase filled}

end loop;
end producer;

Producer Consumer Code

task consumer;

loop
wait(fullspots);{wait till not empty}

wait(access); {wait for access}

FETCH(VALUE);

release(access); {relinquish access}

release(emptyspots); {increase empty}
-- consume VALUE –-

end loop;

end consumer;

Evaluation of Semaphores
 Misuse of semaphores can cause failures in cooperation synchronization,

e.g., the buffer will overflow if the wait of fullspots is left out

 Misuse of semaphores can cause failures in competition synchronization,

e.g., the program will deadlock if the release of access is left out

Monitors

 Ada, Java, C#

 The idea: encapsulate the shared data and its operations to restrict access

 A monitor is an abstract data type for shared data

Competition Synchronization
 Shared data is resident in the monitor (rather than in the client units)

 All access resident in the monitor

Department of CSE Page 17 of 35

– Monitor implementation guarantee synchronized access by allowing only one

access at a time

– Calls to monitor procedures are implicitly queued if the monitor is busy at

the time of the call

Cooperation Synchronization
 Cooperation between processes is still a programming task

– Programmer must guarantee that a shared buffer does not experience
underflow or overflow

Evaluation of Monitors

Figure 6.2 Cooperation Synchronization

 A better way to provide competition synchronization than are semaphores

 Semaphores can be used to implement monitors

 Monitors can be used to implement semaphores

 Support for cooperation synchronization is very similar as with semaphores, so

it has the same problems

Message Passing

 Message passing is a general model for concurrency

– It can model both semaphores and monitors
– It is not just for competition synchronization

 Central idea: task communication is like seeing a doctor--most of the time she

waits for you or you wait for her, but when you are both ready, you get together,

or rendezvous

Message Passing Rendezvous

 To support concurrent tasks with message passing, a language needs:
– A mechanism to allow a task to indicate when it is willing to accept messages
– A way to remember who is waiting to have its message accepted and some

“fair” way of choosing the next message

 When a sender task‘s message is accepted by a receiver task, the actual

message transmission is called a rendezvous

Ada Support for Concurrency

 The Ada 83 Message-Passing Model

– Ada tasks have specification and body parts, like packages; the spec has the

interface, which is the collection of entry points:
task Task_Example is

entry ENTRY_1 (Item : in Integer);

end Task_Example;

Department of CSE Page 18 of 35

Task Body

 The body task describes the action that takes place when a rendezvous occurs

 A task that sends a message is suspended while waiting for the message to be

accepted and during the rendezvous

 Entry points in the spec are described with accept clauses in the body accept
entry_name (formal parameters) do

…

end entry_name

Example of a Task Body

task body Task_Example is

begin
loop

accept Entry_1 (Item: in Float) do

...
end Entry_1;

end loop;

end Task_Example;

Ada Message Passing Semantics

 The task executes to the top of the accept clause and waits for a message

 During execution of the accept clause, the sender is suspended

 accept parameters can transmit information in either or both directions

 Every accept clause has an associated queue to store waiting messages

Figure 6.3 Rendezvous Time Lines

Message Passing: Server/Actor Tasks

 A task that has accept clauses, but no other code is called a server task (the

example above is a server task)

 A task without accept clauses is called an actor task
– An actor task can send messages to other tasks

– Note: A sender must know the entry name of the receiver, but not vice versa

(asymmetric)

Department of CSE Page 19 of 35

Figure 6.4 Graphical Representation of a Rendezvous

Example: Actor Task

task Water_Monitor; -- specificationtask body body Water_Monitor is -- body

begin
loop

if Water_Level > Max_Level

then Sound_Alarm;
end if;

end loop;
end Water_Monitor;

Multiple Entry Points

delay 1.0; -- No further execution

-- for at least 1 second

 Tasks can have more than one entry point

– The specification task has an entry clause for each

– The task body has an accept clause for each entry clause, placed in a select
clause, which is in a loop

A Task with Multiple Entries
task body Teller is

loop

select

accept Drive_Up(formal params) do
...

end Drive_Up;

...
or

accept Walk_Up(formal params) do
...

end Walk_Up;
...

end select;

end loop;
end Teller;

Semantics of Tasks with Multiple accept Clauses

 If exactly one entry queue is nonempty, choose a message from it

 If more than one entry queue is nonempty, choose one, nondeterministically,

from which to accept a message

 If all are empty, wait

 The construct is often called a selective wait

 Extended accept clause - code following the clause, but before the next clause

– Executed concurrently with the caller

Department of CSE Page 20 of 35

Cooperation Synchronization with Message Passing
 Provided by Guarded accept clauses

when not Full(Buffer) =>
accept Deposit (New_Value) do

 An accept clause with a with a when clause is either open or closed
– A clause whose guard is true is called open
– A clause whose guard is false is called closed
– A clause without a guard is always open

Semantics of select with Guarded accept Clauses:

 select first checks the guards on all clauses

 If exactly one is open, its queue is checked for messages

 If more than one are open, non-deterministically choose a queue among them to

check for messages

 If all are closed, it is a runtime error

 A select clause can include an else clause to avoid the error

– When the else clause completes, the loop repeats

Example of a Task with Guarded accept Clauses

 Note: The station may be out of gas and there may or may not be a position

available in the garage

task Gas_Station_Attendant is
entry Service_Island (Car : Car_Type);
entry Garage (Car : Car_Type);

end Gas_Station_Attendant;

Example of a Task with Guarded accept Clauses

task body Gas_Station_Attendant is
begin

loop
select

when Gas_Available =>

accept Service_Island (Car : Car_Type) do
Fill_With_Gas (Car);

end Service_Island;
or
when Garage_Available =>

accept Garage (Car : Car_Type) do
Fix (Car);

end Garage;
else

end select;

end loop;

Sleep;

end Gas_Station_Attendant;
Competition Synchronization with Message Passing

 Modeling mutually exclusive access to shared data

 Example--a shared buffer

 Encapsulate the buffer and its operations in a task

 Competition synchronization is implicit in the semantics of accept clauses
– Only one accept clause in a task can be active at any given time

Department of CSE Page 21 of 35

Task Termination
 The execution of a task is completed if control has reached the end of its code

body

 If a task has created no dependent tasks and is completed, it is terminated

 If a task has created dependent tasks and is completed, it is not terminated

until all its dependent tasks are terminated

The terminate Clause
 A terminate clause in a select is just a terminate statement

 A terminate clause is selected when no accept clause is open

 When a terminate is selected in a task, the task is terminated only when its

master and all of the dependents of its master are either completed or are

waiting at a terminate

 A block or subprogram is not left until all of its dependent tasks are terminated

Message Passing Priorities
 The priority of any task can be set with the pragma priority pragma Priority

(expression);

 The priority of a task applies to it only when it is in the task ready queue

Binary Semaphores

 For situations where the data to which access is to be controlled is NOT

encapsulated in a task
task Binary_Semaphore is

entry Wait;

entry release;

end Binary_Semaphore;

task body Binary_Semaphore is

begin

loop
accept Wait;
accept Release;

end loop;
end Binary_Semaphore;

Concurrency in Ada 95

 Ada 95 includes Ada 83 features for concurrency, plus two new features
– Protected objects: A more efficient way of implementing shared data to allow

access to a shared data structure to be done without rendezvous
– Asynchronous communication

Ada 95: Protected Objects

 A protected object is similar to an abstract data type

 Access to a protected object is either through messages passed to entries, as

with a task, or through protected subprograms

 A protected procedure provides mutually exclusive read-write access to

protected objects

 A protected function provides concurrent read-only access to protected objects

Asynchronous Communication

 Provided through asynchronous select structures

 An asynchronous select has two triggering alternatives, an entry clause or a

delay

– The entry clause is triggered when sent a message
– The delay clause is triggered when its time limit is reached

Department of CSE Page 22 of 35

Evaluation of the Ada
 Message passing model of concurrency is powerful and general

 Protected objects are a better way to provide synchronized shared data

 In the absence of distributed processors, the choice between monitors and tasks

with message passing is somewhat a matter of taste

 For distributed systems, message passing is a better model for concurrency

Java Threads
 The concurrent units in Java are methods named run

– A run method code can be in concurrent execution with other such methods
– The process in which the run methods execute is called a thread

Class myThread extends Thread{
public void run () {…}

}
…

Thread myTh = new MyThread ();

myTh.start();

Controlling Thread Execution

 The Thread class has several methods to control the execution of threads
– The yield is a request from the running thread to voluntarily surrender the

processor

– The sleep method can be used by the caller of the method to block the thread
– The join method is used to force a method to delay its execution until the run

method of another thread has completed its execution

Thread Priorities

 A thread‘s default priority is the same as the thread that create it
– If main creates a thread, its default priority is NORM_PRIORITY

 Threads defined two other priority constants, MAX_PRIORITY and
MIN_PRIORITY

 The priority of a thread can be changed with the methods setPriority

Competition Synchronization with Java Threads

 A method that includes the synchronized modifier disallows any other method

from running on the object while it is in execution
…

public synchronized void deposit(int i) {…}

public synchronized int fetch() {…}

…

 The above two methods are synchronized which prevents them from interfering

with each other

 If only a part of a method must be run without interference, it can be

synchronized through synchronized statement
synchronized (expression)

statement

Cooperation Synchronization with Java Threads
 Cooperation synchronization in Java is achieved via wait, notify, and notifyAll

methods

– All methods are defined in Object, which is the root class in Java, so all
objects inherit them

 The wait method must be called in a loop

Department of CSE Page 23 of 35

 The notify method is called to tell one waiting thread that the event it was
waiting has happened

 The notifyAll method awakens all of the threads on the object‘s wait list

Java’s Thread Evaluation

 Java‘s support for concurrency is relatively simple but effective

 Not as powerful as Ada‘s tasks

C# Threads

 Loosely based on Java but there are significant differences

 Basic thread operations

– Any method can run in its own thread
– A thread is created by creating a Thread object

– Creating a thread does not start its concurrent execution; it must be

requested through the Start method
– A thread can be made to wait for another thread to finish with Join

– A thread can be suspended with Sleep

– A thread can be terminated with Abort

Synchronizing Threads

 Three ways to synchronize C# threads

– The Interlocked class

 Used when the only operations that need to be synchronized are incrementing

or decrementing of an integer

– The lock statement

 Used to mark a critical section of code in a thread lock (expression) {… }

– The Monitor class

 Provides four methods that can be used to provide more sophisticated

synchronization

C#’s Concurrency Evaluation
 An advance over Java threads, e.g., any method can run its own thread

 Thread termination is cleaner than in Java

 Synchronization is more sophisticated

Statement-Level Concurrency
 Objective: Provide a mechanism that the programmer can use to inform

compiler of ways it can map the program onto multiprocessor architecture

 Minimize communication among processors and the memories of the other

processors

High-Performance Fortran
 A collection of extensions that allow the programmer to provide information to

the compiler to help it optimize code for multiprocessor computers

 Specify the number of processors, the distribution of data over the memories of
those processors, and the alignment of data

Primary HPF Specifications
 Number of processors

!HPF$ PROCESSORS procs (n)

 Distribution of data
!HPF$ DISTRIBUTE (kind) ONTO procs :: identifier_list
– kind can be BLOCK (distribute data to processors in blocks) or

CYCLIC (distribute data to processors one element at a time)

Department of CSE Page 24 of 35

 Relate the distribution of one array with that of another
ALIGN array1_element WITH array2_element

Statement-Level Concurrency Example
REAL list_1(1000), list_2(1000)
INTEGER list_3(500), list_4(501)

!HPF$ PROCESSORS proc (10)

!HPF$ DISTRIBUTE (BLOCK) ONTO procs ::
list_1, list_2

!HPF$ ALIGN list_1(index) WITH

list_4 (index+1)

…

list_1 (index) = list_2(index)
list_3(index) = list_4(index+1)

 FORALL statement is used to specify a list of statements that may be executed

concurrently
FORALL (index = 1:1000)
list_1(index) = list_2(index)

 Specifies that all 1,000 RHSs of the assignments can be evaluated before any

assignment takes place

Summary

 Concurrent execution can be at the instruction, statement, or subprogram level

 Physical concurrency: when multiple processors are used to execute concurrent

units

 Logical concurrency: concurrent united are executed on a single processor

 Two primary facilities to support subprogram concurrency: competition

synchronization and cooperation synchronization

 Mechanisms: semaphores, monitors, rendezvous, threads

High-Performance Fortran provides statements for
specifying how data is to be distributed over the memory
units connected to multiple processorsException Handling &
Logic Programming Language

Introduction to Exception Handling
 In a language without exception handling

– When an exception occurs, control goes to the operating system,

where a message is displayed and the program is terminated

 In a language with exception handling

– Programs are allowed to trap some exceptions, thereby providing the

possibility of fixing the problem and continuing

 Basic Concepts – CO3
 Many languages allow programs to trap input/output errors (including EOF)

 An exception is any unusual event, either erroneous or not, detectable by
either hardware or software, that may require special processing

 The special processing that may be required after detection of an exception
is called exception handling

 The exception handling code unit is called an exception handler

Exception Handling Alternatives
 An exception is raised when its associated event occurs

Department of CSE Page 25 of 35

 A language that does not have exception handling capabilities can still

define, detect, raise, and handle exceptions (user defined, software

detected)

 Alternatives:
– Send an auxiliary parameter or use the return value to indicate the

return status of a subprogram

– Pass an exception handling subprogram to all subprograms

Advantages of Built-in Exception Handling
 Error detection code is tedious to write and it clutters the program

 Exception handling encourages programmers to consider many

different possible errors

 Exception propagation allows a high level of reuse of exception handling

code

Design Issues

 How are user-defined exceptions specified?

 Should there be default exception handlers for programs that do not provide

their own?

 Can built-in exceptions be explicitly raised?

 Are hardware-detectable errors treated as exceptions that can be handled?

 Are there any built-in exceptions?

 How can exceptions be disabled, if at all?

 How and where exception handlers specified and what are their scope?

 How is an exception occurrence bound to an exception handler?

 Can information about the exception be passed to the handler?

 Where does execution continue, if at all, after an exception handler
completes its execution? (continuation vs. resumption)

 Is some form of finalization provided?

Department of CSE Page 26 of 35

Figure 7.1 Exception Handling Control Flow

 Exception Handling in Ada – CO3

 The frame of an exception handler in Ada is either a subprogram body, a

package body, a task, or a block

 Because exception handlers are usually local to the code in which the exception

can be raised, they do not have parameters

Ada Exception Handlers
 Handler form:

when exception_choice{|exception_choice} => statement_sequence
...
[when others =>

statement_sequence]
exception_choice form:

exception_name | others
 Handlers are placed at the end of the block or unit in which they occur

Binding Exceptions to Handlers
 If the block or unit in which an exception is raised does not have a handler for

that exception, the exception is propagated elsewhere to be handled

– Procedures - propagate it to the caller

– Blocks - propagate it to the scope in which it appears

– Package body - propagate it to the declaration part of the unit that declared

the package (if it is a library unit, the program is terminated)
– Task - no propagation; if it has a handler, execute it; in either case, mark it

"completed"

Continuation
 The block or unit that raises an exception but does not handle it is always

terminated (also any block or unit to which it is propagated that does not

handle it)

Other Design Choices
 User-defined Exceptions form:

exception_name_list : exception;
 Raising Exceptions form:

raise [exception_name]
– (the exception name is not required if it is in a handler--in this case, it

propagates the same exception)

 Exception conditions can be disabled with:

pragma SUPPRESS(exception_list)
Predefined Exceptions

 CONSTRAINT_ERROR - index constraints, range constraints, etc.

 NUMERIC_ERROR - numeric operation cannot return a correct value (overflow,

division by zero, etc.)

Department of CSE Page 27 of 35

 PROGRAM_ERROR - call to a subprogram whose body has not been elaborated

 STORAGE_ERROR - system runs out of heap

 TASKING_ERROR - an error associated with tasks

Evaluation
 The Ada design for exception handling embodies the state-of-the-art in language

design in 1980

 A significant advance over PL/I

 Ada was the only widely used language with exception handling until it was

added to C++

 Exception Handling in C++ - CO3

 Added to C++ in 1990

 Design is based on that of CLU, Ada, and ML

C++ Exception Handlers
 Exception Handlers Form:

try {
-- code that is expected to raise an exception
}
catch (formal parameter) {
-- handler code
}
...
catch (formal parameter) {
-- handler code
}

The catch Function
 catch is the name of all handlers--it is an overloaded name, so the formal

parameter of each must be unique

 The formal parameter need not have a variable
– It can be simply a type name to distinguish the handler it is in from others

 The formal parameter can be used to transfer information to the handler

 The formal parameter can be an ellipsis, in which case it handles all exceptions

not yet handled

Throwing Exceptions
 Exceptions are all raised explicitly by the statement: throw [expression];

 The brackets are metasymbols

 A throw without an operand can only appear in a handler; when it appears, it

simply re-raises the exception, which is then handled elsewhere

 The type of the expression disambiguates the intended handler

Unhandled Exceptions

 An unhandled exception is propagated to the caller of the function in which it is

raised

 This propagation continues to the main function

Continuation

 After a handler completes its execution, control flows to the first statement after

the last handler in the sequence of handlers of which it is an element

 Other design choices

Department of CSE Page 28 of 35

– All exceptions are user-defined
– Exceptions are neither specified nor declared

– Functions can list the exceptions they may raise

– Without a specification, a function can raise any exception (the throw clause)

Evaluation
 It is odd that exceptions are not named and that hardware- and system software-

detectable exceptions cannot be handled

 Binding exceptions to handlers through the type of the parameter certainly does

not promote readability

Exception Handling in Java – CO3

 Based on that of C++, but more in line with OOP philosophy

 All exceptions are objects of classes that are descendants of the Throwable class

Classes of Exceptions
 The Java library includes two subclasses of Throwable :

– Error

o Thrown by the Java interpreter for events such as heap overflow

o Never handled by user programs
– Exception

o User-defined exceptions are usually subclasses of this

o Has two predefined subclasses, IOException and RuntimeException
e.g., ArrayIndexOutOfBoundsException and NullPointerException

Java Exception Handlers
 Like those of C++, except every catch requires a named parameter and all

parameters must be descendants of Throwable

 Syntax of try clause is exactly that of C++

 Exceptions are thrown with throw, as in C++, but often the throw includes the
new operator to create the object, as in: throw new MyException();

Binding Exceptions to Handlers
 Binding an exception to a handler is simpler in Java than it is in C++

– An exception is bound to the first handler with a parameter is the same class

as the thrown object or an ancestor of it

 An exception can be handled and rethrown by including a throw in the handler

(a handler could also throw a different exception)

Continuation
 If no handler is found in the method, the exception is propagated to the method ‘s

caller

 If no handler is found (all the way to main), the program is terminated

 To ensure that all exceptions are caught, a handler can be included in any try
construct that catches all exceptions

– Simply use an Exception class parameter
– Of course, it must be the last in the try construct

Checked and Unchecked Exceptions
 The Java throws clause is quite different from the throw clause of C++

 Exceptions of class Error and RunTimeException and all of their descendants

are called unchecked exceptions; all other exceptions are called checked

exceptions

 Checked exceptions that may be thrown by a method must be either:
– Listed in the throws clause, or

– Handled in the method

Department of CSE Page 29 of 35

Other Design Choices
 A method cannot declare more exceptions in its throws clause than the method

it overrides

 A method that calls a method that lists a particular checked exception in its

throws clause has three alternatives for dealing with that exception:

– Catch and handle the exception
– Catch the exception and throw an exception that is listed in its own throws

clause

– Declare it in its throws clause and do not handle it

The finally Clause
 Can appear at the end of a try construct

 Form:
finally {..}

 Purpose: To specify code that is to be executed, regardless of what happens in

the try construct

Example
 A try construct with a finally clause can be used outside exception handling

try {
for (index = 0; index < 100; index++) {
…

if (…) {

return;
} //** end of if
} //** end of try clause
finally {
…

} //** end of try construct

Assertions
 Statements in the program declaring a boolean expression regarding the current

state of the computation

 When evaluated to true nothing happens

 When evaluated to false an AssertionError exception is thrown

 Can be disabled during runtime without program modification or recompilation

 Two forms

– assert condition;

– assert condition: expression;

Evaluation
 The types of exceptions makes more sense than in the case of C++

 The throws clause is better than that of C++ (The throw clause in C++ says little

to the programmer)

 The finally clause is often useful

 The Java interpreter throws a variety of exceptions that can be handled by user

programs

Summary of Exception Handling
 Ada provides extensive exception-handling facilities with a comprehensive set of

built-in exceptions.

 C++ includes no predefined exceptions. Exceptions are bound to handlers by

connecting the type of expression in the throw statement to that of the formal

parameter of the catch function

 Java exceptions are similar to C++ exceptions except that a Java exception must

be a descendant of the Throwable class. Additionally Java includes a finally

clause

Department of CSE Page 30 of 35

Logic Programming Introduction CO4

 Logic programming languages, sometimes called declarative programming

languages

 Express programs in a form of symbolic logic

 Use a logical inferencing process to produce results

 Declarative rather that procedural:
– Only specification of results are stated (not detailed procedures for producing

them)

Proposition
 A logical statement that may or may not be true

– Consists of objects and relationships of objects to each other

Symbolic Logic

 Logic which can be used for the basic needs of formal logic:

– Express propositions

– Express relationships between propositions

– Describe how new propositions can be inferred from other propositions

 Particular form of symbolic logic used for logic programming called predicate

calculus

Object Representation
 Objects in propositions are represented by simple terms: either constants or

variables

 Constant: a symbol that represents an object

 Variable: a symbol that can represent different objects at different times

– Different from variables in imperative languages

Compound Terms

 Atomic propositions consist of compound terms

 Compound term: one element of a mathematical relation, written like a

mathematical function

– Mathematical function is a mapping
– Can be written as a table

Parts of a Compound Term
 Compound term composed of two parts

– Functor: function symbol that names the relationship

– Ordered list of parameters (tuple)

 Examples:
student(jon)
like(seth, OSX)
like(nick, windows)
like(jim, linux)

Forms of a Proposition

 Propositions can be stated in two forms:

– Fact: proposition is assumed to be true

– Query: truth of proposition is to be determined

 Compound proposition:

– Have two or more atomic propositions

– Propositions are connected by operators

Department of CSE Page 31 of 35

Logical Operators
Name Symbol Example Meaning

Negation  a a not b

Conjunction  ab a and b

Disjunction  ab a or b

Equivalence  ab a is equivalent to b

Implication




ab

ab

a implies b
b implies a

Quantifiers

Name Example Meaning

universal X.P For all X, P is true

existential X.P There exists a value of X such that P is true

Clausal Form

 Too many ways to state the same thing

 Use a standard form for propositions

 Clausal form:

– B1 B2 … Bn  A1 A2 … Am

– means if all the As are true, then at least one B is true

 Antecedent: right side

 Consequent: left side

Predicate Calculus and Proving Theorems
 A use of propositions is to discover new theorems that can be inferred from

known axioms and theorems

 Resolution: an inference principle that allows inferred propositions to be
computed from given propositions

Resolution
 Unification: finding values for variables in propositions that allows matching

process to succeed

 Instantiation: assigning temporary values to variables to allow unification to
succeed

 After instantiating a variable with a value, if matching fails, may need to
backtrack and instantiate with a different value

Theorem Proving
 Basis for logic programming

 When propositions used for resolution, only restricted form can be used

 Horn clause - can have only two forms

– Headed: single atomic proposition on left side

– Headless: empty left side (used to state facts)

 Most propositions can be stated as Horn clauses

An Overview of Logic Programming

 Declarative semantics

– There is a simple way to determine the meaning of each statement

– Simpler than the semantics of imperative languages

 Programming is nonprocedural

– Programs do not state now a result is to be computed, but rather the form of

the result

Department of CSE Page 32 of 35

The Origins of Prolog
 University of Aix-Marseille

– Natural language processing

 University of Edinburgh

– Automated theorem proving

The Basic Elements of ProLog CO4

 Edinburgh Syntax

 Term: a constant, variable, or structure

 Constant: an atom or an integer

 Atom: symbolic value of Prolog

 Atom consists of either:

– a string of letters, digits, and underscores beginning with a lowercase letter

– a string of printable ASCII characters delimited by apostrophes

Terms: Variables and Structures
 Variable: any string of letters, digits, and underscores beginning with an

uppercase letter

 Instantiation: binding of a variable to a value
– Lasts only as long as it takes to satisfy one complete goal

 Structure: represents atomic proposition
functor(parameter list)

Fact Statements
 Used for the hypotheses

 Headless Horn clauses
female(shelley).
male(bill).
father(bill, jake).

Rule Statements
 Used for the hypotheses

 Headed Horn clause

 Right side: antecedent (if part)

– May be single term or conjunction

 Left side: consequent (then part)

– Must be single term

 Conjunction: multiple terms separated by logical AND operations (implied)

Example Rules
ancestor(mary,shelley):- mother(mary,shelley).

 Can use variables (universal objects) to generalize meaning:
parent(X,Y):- mother(X,Y).
parent(X,Y):- father(X,Y).
grandparent(X,Z):- parent(X,Y), parent(Y,Z).
sibling(X,Y):- mother(M,X), mother(M,Y),

father(F,X), father(F,Y).

Goal Statements
 For theorem proving, theorem is in form of proposition that we want system to

prove or disprove – goal statement

 Same format as headless Horn
man(fred)

 Conjunctive propositions and propositions with variables also legal goals
father(X,mike)

Inferencing Process of Prolog
 Queries are called goals

Department of CSE Page 33 of 35

 If a goal is a compound proposition, each of the facts is a subgoal

 To prove a goal is true, must find a chain of inference rules and/or facts.

For goal Q:
B :- A

C :- B
…

Q :- P

 Process of proving a subgoal called matching, satisfying, or resolution

Approaches

 Bottom-up resolution, forward chaining
– Begin with facts and rules of database and attempt to find sequence that

leads to goal

– Works well with a large set of possibly correct answers

 Top-down resolution, backward chaining
– Begin with goal and attempt to find sequence that leads to set of facts in

database

– Works well with a small set of possibly correct answers

 Prolog implementations use backward chaining

Subgoal Strategies
 When goal has more than one subgoal, can use either

– Depth-first search: find a complete proof for the first subgoal before working

on others

– Breadth-first search: work on all subgoals in parallel

 Prolog uses depth-first search

– Can be done with fewer computer resources

Backtracking
 With a goal with multiple subgoals, if fail to show truth of one of subgoals,

reconsider previous subgoal to find an alternative solution: backtracking

 Begin search where previous search left off

 Can take lots of time and space because may find all possible proofs to every

subgoal

Simple Arithmetic
 Prolog supports integer variables and integer arithmetic

 is operator: takes an arithmetic expression as right operand and variable as left

operand
A is B / 17 + C

 Not the same as an assignment statement!

Example
speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.

Trace
• Built-in structure that displays instantiations at each step

• Tracing model of execution - four events:

– Call (beginning of attempt to satisfy goal)

– Exit (when a goal has been satisfied)

Department of CSE Page 34 of 35

– Redo (when backtrack occurs)
– Fail (when goal fails)

Example

likes(jake,chocolate).
likes(jake,apricots).
likes(darcie,licorice).
likes(darcie,apricots).

trace.
likes(jake,X),
likes(darcie,X).

List Structures
 Other basic data structure (besides atomic propositions we have already seen):

list

 List is a sequence of any number of elements

 Elements can be atoms, atomic propositions, or other terms (including other

lists)
[apple, prune, grape, kumquat]
[] (empty list)
[X | Y] (head X and tail Y)

Append Example
append([], List, List).
append([Head | List_1], List_2, [Head | List_3]) :-
append (List_1, List_2, List_3).

Reverse Example
reverse([], []).
reverse([Head | Tail], List) :-
reverse (Tail, Result),
append (Result, [Head], List).

Deficiencies of Prolog
 Resolution order control

 The closed-world assumption

 The negation problem

 Intrinsic limitations

Applications of Logic Programming – CO4

 Relational database management systems

 Expert systems

 Natural language processing

Summary of Logic Programming
 Symbolic logic provides basis for logic programming

 Logic programs should be nonprocedural

 Prolog statements are facts, rules, or goals

 Resolution is the primary activity of a Prolog interpreter

 Although there are a number of drawbacks with the current state of logic

programming it has been used in a number of areas

Department of CSE Page 35 of 35

	The Concept of Abstraction
	Introduction to Data Abstraction
	Advantages of Data Abstraction

	Language Examples
	Language Examples: Ada
	One solution: make all ADTs pointers
	Language Examples: C++
	Evaluation of ADTs in C++ and Ada
	Language Examples: Java
	Language Examples: C#
	C# Property Example

	Parameterized Abstract Data Types
	Parameterized ADTs in Ada
	Parameterized ADTs in C++
	Parameterized Classes in Java 5.0
	Parameterized Classes in C# 2005
	Summary of ADT

	Object-Oriented Programming
	Inheritance
	Object-Oriented Concepts
	Dynamic Binding
	Dynamic Binding Concepts

	Design Issues for OOP Languages
	The Exclusivity of Objects
	Are Subclasses Subtypes?
	Type Checking and Polymorphism
	Single and Multiple Inheritance
	Allocation and DeAllocation of Objects
	Dynamic and Static Binding
	Nested Classes

	Support for OOP in Smalltalk
	Support for OOP in C++
	Support for OOP in Java – CO4
	e.g.,

	Support for OOP in C# -CO4
	Support for OOP in Ada 95 – CO4
	Implementing OOPs Constructs
	Instance Data Storage
	Dynamic Binding of Methods Calls
	Summary of OOPs

	Concurrency
	Multiprocessor Architectures
	Categories of Concurrency
	Motivations for Studying Concurrency

	Subprogram-Level Concurrency
	Two General Categories of Tasks
	Task Synchronization
	Kinds of synchronization
	Scheduler
	Task Execution States
	Liveness and Deadlock
	Design Issues for Concurrency
	Methods of Providing Synchronization

	Semaphores
	Cooperation Synchronization with Semaphores
	Semaphores: Wait Operation
	Semaphores: Release Operation
	Producer Consumer Code
	Producer Consumer Code (1)
	Competition Synchronization with Semaphores
	Producer Consumer Code (2)
	Producer Consumer Code (3)
	Evaluation of Semaphores

	Monitors
	Competition Synchronization
	Cooperation Synchronization
	Evaluation of Monitors

	Message Passing
	Message Passing Rendezvous

	Ada Support for Concurrency
	Task Body
	Example of a Task Body
	Ada Message Passing Semantics
	Message Passing: Server/Actor Tasks
	Example: Actor Task
	Multiple Entry Points
	A Task with Multiple Entries
	Semantics of Tasks with Multiple accept Clauses
	Cooperation Synchronization with Message Passing
	Semantics of select with Guarded accept Clauses:
	Example of a Task with Guarded accept Clauses
	Example of a Task with Guarded accept Clauses (1)
	Competition Synchronization with Message Passing
	Task Termination
	The terminate Clause
	Message Passing Priorities
	Binary Semaphores
	Concurrency in Ada 95
	Ada 95: Protected Objects
	Asynchronous Communication
	Evaluation of the Ada

	Java Threads
	Controlling Thread Execution
	Thread Priorities
	Competition Synchronization with Java Threads
	Cooperation Synchronization with Java Threads
	Java’s Thread Evaluation

	C# Threads
	Synchronizing Threads
	C#’s Concurrency Evaluation

	Statement-Level Concurrency
	High-Performance Fortran
	Primary HPF Specifications
	Summary

	High-Performance Fortran provides statements for specifying how data is to be distributed over the memory units connected to multiple processorsException Handling & Logic Programming Language
	Introduction to Exception Handling
	Exception Handling Alternatives
	Advantages of Built-in Exception Handling
	Design Issues
	Exception Handling in Ada – CO3
	Ada Exception Handlers
	Binding Exceptions to Handlers
	Continuation
	Other Design Choices
	Predefined Exceptions
	Evaluation

	Exception Handling in C++ - CO3
	C++ Exception Handlers
	The catch Function
	Throwing Exceptions
	Unhandled Exceptions
	Continuation
	Evaluation

	Exception Handling in Java – CO3
	Classes of Exceptions
	Java Exception Handlers
	Binding Exceptions to Handlers
	Continuation
	Checked and Unchecked Exceptions
	Other Design Choices
	The finally Clause
	Example
	Assertions
	Evaluation
	Summary of Exception Handling

	Logic Programming Introduction CO4
	Proposition
	Symbolic Logic
	Object Representation
	Compound Terms
	Parts of a Compound Term
	Forms of a Proposition
	Logical Operators
	Predicate Calculus and Proving Theorems
	Resolution
	Theorem Proving

	An Overview of Logic Programming
	The Origins of Prolog

	The Basic Elements of ProLog CO4
	Terms: Variables and Structures
	Fact Statements
	Rule Statements
	Example Rules
	Goal Statements
	Inferencing Process of Prolog
	Approaches
	Subgoal Strategies
	Backtracking
	Simple Arithmetic
	Example
	Trace
	Example (1)
	List Structures
	Append Example
	Reverse Example
	Deficiencies of Prolog

	Applications of Logic Programming – CO4
	Summary of Logic Programming

